[T T AlS | cacHoLomes eroup

Bun: All-in-One JavaScript
Runtime and Toolkit

Mitrais is a world-class technology company based in Indonesia and part of the
global CAC Holdings Group. Founded in 1991, we have developed and implemented

software for over 700 clients, and we are committed to building long-term and high-
trust relationships. www.mitrais.com

Mitrais Whitepaper Page 02

Table of Contents

1. Introduction 04

2. Core Functionalities 06
2.1 Javascript Runtime 06
2.2 \Web-standard APIs 07
2.3 Package Manager / Node.js Compatibility 08
2.4 Built-in-standard Library 09
2.5 Hot Reloading 10
2.6 Native TypeScript Support 10

3. Advantages 1
3.1Speed 1
3.2 Compatibility 12
3.3 All-in-one Toolkit 13

4. Use Cases 14

5. Conclusion 15

Mitrais Whitepaper Page 03

Abstract

Bun is a powerful tool for developers to create JavaScript and TypeScript applications. Developed using the Zig
programming language, Bun offers a wide range of functionalities such as running code, managing packages, testing,
and bundling. This white paper provides an exploration of Bun's capabilities and highlights its value in app development.

One of the key features of Bun is its ability to run code efficiently. It utilizes the Zig programming language and
JavaScriptCore, a JavaScript engine, to optimize the execution of JavaScript and TypeScript applications, resulting in
faster and more efficient performance.

Additionally, Bun excels in package management, allowing developers to easily manage and organize their project
dependencies. With Bun, developers can effortlessly install, update, and remove packages, streamlining the
development process.

Another notable feature of Bun is its testing capabilities. It provides developers with a robust testing framework that
enables them to thoroughly test their applications for bugs and errors. By automating the testing process, Bun helps
ensure the reliability and stability of the developed apps.

Moreover, Bun offers seamless bundling functionality, allowing developers to bundle their code into a single file for
deployment. This simplifies the distribution process and enhances the overall efficiency of app deployment.

Mitrais Whitepaper Page 04

1. Introduction

Bun is an all-in-one JavaScript runtime and toolkit designed for speed, complete with a bundler, test runner, and
Node.js-compatible package manager. It was created by Jarred Sumner as a drop-in replacement for Node.js. Some
key features of Bun include:

e Bun runtime: A fast JavaScript runtime written in Zig and powered by JavaScriptCore, which reduces startup times
and memory usage.

« Web-standard APIs: Bun implements standard Web APIs like fetch, WebSocket, and ReadableStream, using Safari's
implementation for some APIs like Headers and URL.

 Node.js compatibility: Bun supports Node-style module resolution and aims for full compatibility with built-in
Node.js globals (process, Buffer) and modules (path, fs, http, etc.).

e Built-in standard library: Bun offers functionalities for diverse protocols and modules, including environment
variables, HTTP, WebSocket, file system, and more.

e Hot reloading: Bun supports hot reloading, allowing developers to see changes in real-time without restarting the
application.

e Native TypeScript support: Bun supports TypeScript out of the box, making it easier for developers to work with
TypeScript projects.

Mitrais Whitepaper Page 05

Bun is an open-source project with a growing community of users actively contributing to its development and
improvement. It is written in Zig and uses JavaScriptCore as the JavaScript engine, which is developed by Apple for

Safari.

On September 8, 2023, Bun achieved a significant milestone by launching version 1.0, signifying the first stable release
for Bun on macOS and Linux. However, the Windows version is still in the experimental phase and currently supports
only the JavaScript runtime. In the Windows build, the package manager, test runner, and bundler are disabled, but
there are plans to enable them once they become more stable and their performance is optimized.

£

[A | ’
o ‘_ . p ° ;
) —

s ¢

Mitrais Whitepaper Page 06

2. Core Functionalities

Bun offers a range of core functionalities that make it an essential tool for JavaScript andTypeScript app development.
These include:

2.1 JavaScript Runtime

JavaScript runtime is the environment where JavaScript code is executed, and it provides the necessary infrastructure
for storing functions, variables, and managing memory. There are two main types of JavaScript runtimes: browser
runtime environments and Node.js runtime environments, each with its own set of global objects and APIs.

e Browser Runtime Environment: The most common place where JavaScript code is executed is in a browser.
JavaScript code in a browser has access to the Window object and the Document Object Model(DOM), which are
critical for web developers because they provide the necessary APIs that allow them to create dynamic web
applications.

 Node.js Runtime Environment: Node.js runtime environment is a cross-platform environment for executing
JavaScript code, commonly used for server-side or desktop applications. It is built on Chrome's V8 JavaScript
engine, which compiles JavaScript directly to native machine code before executing it. This approach allows Node.js
to achieve low latency and high throughput by utilizing a single-threaded, non-blocking event loop and a low-level |/
O API. Bun as a JavaScript runtime is written in Zig and powered by JavaScriptCore as the JavaScript engine, which
IS developed by Apple for Safari browser. Instead of relying on the V8 engine, as Node.js does, Bun utilizes
JavaScriptCore, widely recognized for its superior performance.

Mitrais Whitepaper Page 07

2.2 Web-standard APIs

Web-standard APIs are a set of standardized web functionalities that are commonly available in web browsers. These
APIls provide a consistent and familiar development experience for web developers. Web-standard APIs are used to
transfer data and interact with the functionality between web-based systems, and they deliver requests from web
applications and responses from servers using Hypertext Transfer Protocol (HTTP).

The Web-standardAPIs supported by Bun include standard web functionalities commonly available in browsers. These
APIls are natively implemented in Bun, providing faster and more reliable support compared to traditional server-side
environments like Node.js. Some of the Web-standard APIs supported by Bun include:

e Fetch: This API is used for making network requests. It allows you to make HTTP requests, including GET, POST,
PUT, and DELETE, and is commonly used to fetch data from a server.

» WebSocket: This API provides full-duplex communication channels over a single TCP connection. It is commonly
used in web development for creating real-time, bi-directional communication between clients and servers.

 ReadableStream: This API represents a readable stream of byte data. It is commonly used for handling streaming
data in web applications.

Bun's native implementation of these Web APIs ensures they are faster and more reliable compared to traditional
server-side environments like Node.js. This built-in support for Web-standard APIls simplifies development by
eliminating the need for additional packages and ensuring consistent and reliable functionality across different
environments.

Mitrais Whitepaper

2.3 Package Manager / Node.js compatibility

Bun supports Node.js-style module resolution and aims for full compatibility
with built-in Node.js globals and modules. This means that Bun is designed to
work seamlessly with existing Node.js code and packages, allowing
developers to leverage their knowledge and resources from Node.js when
using Bun. Some key aspects of this compatibility include:

e Support for built-in Node.js modules such as fs, path, and net.

e Recognition of global variables like _dirname and process.

e Adherence to the Node.js module resolution algorithm, including the
familiar node_modules structure.

Bun's goal of achieving complete Node.js APl compatibility means that most
npm packages intended for Node.js environments will work with Bun out of the
box. This compatibility is an ongoing effort, and the Bun team regularly
updates the compatibility status to reflect the latest version of Bun.

While some discussions express reservations about Bun's compatibility with
Node.js, the focus on achieving this compatibility is aimed at easing the
transition for Node.js developers and leveraging the strengths of both
environments

Page 08

Mitrais Whitepaper Page 09

2.4 Built-in standard library

Bun's built-in standard library refers to the functionalities and modules that are included in the Bun runtime
environment. These functionalities and modules are designed to provide developers with a comprehensive set of tools
for building JavaScript and TypeScript applications. Some of the functionalities and modules included in the Bun
standard library are:

e Environment variables: Bun provides access to environment variables, which are used to store configuration
information for an application.

e HTTP: Bun includes a built-in HTTP server that can be used to serve web pages and handle HT TP requests.

e WebSocket: Bun includes a built-in WebSocket server that can be used to create real-time, bi-directional
communication between clients and servers.

e Filesystem: Bun includes a built-in file system module that can be used to read and write files.

o SQLite: Bun includes a built-in SQLite module that can be used to interact with SQLite databases.

Bun distinguishes itself from Node.js by not relying on npm or external dependencies for its core operations. Instead,
Bun features a built-in standard library that provides functionalities for various protocols and modules, including
environment variables, HT TP, WebSocket, file system, and more.

Mitrais

2.5 Hot Reloading

Bun supports hot reloading to automatically detect and
apply code changes in real-time without the need to
manually restart the application. When hot reloading is
enabled, Bun monitors the source code for any
modifications, and upon detecting a change, it
automatically updates the running application with the
new code, allowing developers to see the effects of their
changes instantaneously.

This feature significantly enhances the development
experience by eliminating the need for manual restarts,
thereby saving time, and increasing productivity. It is
important to note that Bun's hot reloading is a server-side
feature and should not be confused with the hot
reloading experience provided by many front-end
frameworks, where changes to the frontend code are
reflected in the browser without requiring a full-page
refresh.

Whitepaper

Page 10

2.6 Native TypeScript support

Bun can directly compile and run TypeScript code without
the need for an additional transpiler. This built-in support
for TypeScript makes it easier for developers to work with
TypeScript projects, as they can write and execute
'ypeScript code without the extra step of transpiling it to
JavaScript.

Bun treats TypeScript as a first-class citizen, allowing
developers to directly execute .ts and .tsx files just like
vanilla JavaScript, with no extra configuration. It's
important to note that, similar to other build tools, Bun
does not type check the files, so developers should use
the official TypeScript CLI (tsc) if they are looking to catch
static type errors.

This native TypeScript support is a key feature of Bun,
designed to streamline the development process and
enhance the efficiency of working with TypeScript
projects.

Mitrais Whitepaper Page 11

3. Advantages

Bun offers several advantages over traditional JavaScript runtimes and toolkits, including:

3.1 Speed
The Zig-based and JavaScriptCore implementation in Bun significantly impacts its performance, contributing to its

speed, efficiency, and memory usage. The use of Zig, a high-performance, low-level programming language, allows
Bun to achieve faster startup times and reduced memory usage. Additionally, Bun's gzip implementation, which is
optimized and written in Zig, further enhances its performance.

The integration of JavaScriptCore, the engine powering Apple’s Safari, under the hood of Bun, also plays a crucial role in
reducing startup times and memory usage. This combination of Zig and JavaScriptCore enables Bun to outperform
other platforms in various benchmarks, making it a promising choice for modern JavaScript development. The
emphasis on performance, elegant APIs, and developer experience makes Bun a compelling option for those seeking a
more efficient and faster JavaScript runtime.

According to the benchmarks on the Bun website, Bun's serve() function outperforms Node.js and Deno by 377% and
102% respectively.

Mitrais Whitepaper Page 12

Additionally, various articles and blog posts have conducted performance tests comparing Bunto Node.js, with results
indicating that Bun is faster in certain scenarios. For example, a benchmark conducted by TSH.io showed that Bun
serves 4 times more requests per second and that packages are installed 30 times faster compared to Node.js.

Another article on ByteOfDev.com also presented benchmarks where Bun outperformed Node.js and Deno in various
tests, such as I/O operations and SQLite queries.

These benchmarks and tests suggest that Bun demonstrates superior performance in certain scenarios compared to
Node.js and Deno.

3.2 Compatibility
While Bun aims for full compatibility with built-in Node.js globals and modules, the extent of this compatibility is still an
ongoing effort and remains incomplete.

According to a review on Delicious Brains, while Bun uses the same module resolution algorithm as Node.js, many built-
iIn and global modules are only partially implemented, and some are not implemented at all. Developers should check
the compatibility page on Bun's website for the latest updates before deciding if Bun will meet their needs as Bun's
team regularly updates the compatibility page as support is improved.

Mitrais Whitepaper Page 13

3.3 All-in-one toolkit
By providing a comprehensive set of tools within a single environment, Bun enhances the user experience, reduces the

need for multiple external tools, and offers a more seamless and integrated development workflow.

This all-in-one approach is designed to speed up the development cycle, eliminate the need for separate transpilers,
bundlers, and test runners, and provide a package manager with unmatched speed.

Mitrais Whitepaper Page 14

4. Use-Cases

Bun is suitable for a wide range of use cases, |
including:

» Web development: Bun can be used to develop
web applications, including server-side and
client-side JavaScript/TypeScript projects.

e Desktop development: Bun can be used to
develop desktop applications, including cross-
platform JavaScript/TypeScript projects.

« Command-line tools: Bun can be used to
develop command-line tools, including
JavaScript/TypeScript projects that can be run
from the command line.

Mitrais Whitepaper Page 15

Conclusion

Bun is fast, all-in-one JavaScript runtime that aims to provide a complete toolkit for JavaScript and TypeScript apps.

It includes a built-in bundler, test runner, and package manager, and implements standard Web APIs like fetch,
WebSocket, and ReadableStream.

Bun is powered by the JavaScriptCore engine, and is written in Zig, which contributes to its speed and efficiency.
The performance of Bun is a key focus, with significant efforts spent on profiling, benchmarking, and optimizing to
achieve its speed.

Whilst Bun is still considered experimental, its performance, speed, and potential for enhancing developer
productivity are highlighted as key advantages.

The built-in tools, such as the bundler, test runner, and package manager, are considered advantageous due to their
speed, efficiency, and seamless integration with the Bun runtime. If considering Bunas a replacement, we need to
carefully checks for any errors or issues and mitigate any risks before fully integrating it into our development
workflow.

Despite being a relatively new project, Bun is gaining ground as a competitor to widely used runtime environments
like Node.js and Deno, and it is seen as a promising choice for developing fast, performant, error-free applications.

Mitrais Whitepaper

References

1. https://bun.sh/

2. https://kinsta.com/blog/bun-sh

3. https://dev.to/snickdx/what-is-the-javascript-
runtime-4n09

4. https://www.codecademy.com/article/introduction-
to-javascript-runtime-environments

o. https://www.freecodecamp.org/news/what-is-node-
js-explained/

6. https://www.infoworld.com/article/3210589/what-is-
nodejs-javascript-runtime-explained.ntml

/. https://en.wikipedia.org/wiki/WebKit

8. https://en.wikipedia.org/wiki/Bun_(software)

9. https://en.wikipedia.org/wiki/Web_API

10. https://refine.dev/blog/bun-js-vs-node/

11. https://www.builder.io/blog/bun-vs-node-js

12. https://github.com/oven-sh/bun/discussions/5518
13. https://www.linkedin.com/pulse/bun-10-new-era-
javascript-development-taqui-imam

Page 16

14. https://www.linkedin.com/pulse/arrival-bun-10-
game-changer-javascript-development-dennis-
hundertmark-x6zee

15. https://news.ycombinator.com/item?id=37244012
16. https://byteofdev.com/posts/what-is-bun/

17. https://tsh.io/blog/bun-benchmark/

18. https://blog.devgenius.io/bun-pros-and-cons-and-
main-usage-scenarios-2e8402a91e5f?gi=ad/961e5f1/8
19. https://www.newdev.io/blog/bun-vs-nodejs

20. https://deliciousbrains.com/a-short-guide-to-using-
bun/

21. https://blog.logrocket.com/bun-adoption-guide/

22. https://www.infog.com/news/2023/07/bun-native-
bundler-macros/

23. https://www.thegreenreport.blog/articles/buns-test-
runner-the-future-of-javascript-testing/buns-test-
runner-the-future-of-javascript-testing.htmil

24. https://www.wearecapicua.com/blog/bun-javascript

Mitrais Whitepaper Page 17

About Mitrais

Mitrais is a world-class technology company based In
Indonesia and a part of the global CAC Holdings Group.
We have been recognized as Indonesia's leading
provider of offshore development services by Forrester
Research, and our goal is to help your business meet
and exceed your expectations. Combining Western
Innovation with Eastern productivity, Mitrais maintains
its preeminent position in the Asia Pacific region. As a
member of the Microsoft Partner Network with a Gold
Application Development competency, we demonstrate
the highest level of competence and expertise with
Microsoft technologies. Our close working relationship
with Microsoft enables us to deliver exceptional
software development services. Through collaboration
with trusted partners and our team of talented software
engineers, we are committed to providing outstanding
solutions to our valued clients.

[T 17 AlS | cacHotomes crour

Terima Kasih Thank You HOWKESTIVWELT

