[T T AlS | cacHoLomes eroup

Adopting Microservices
Architecture by Implementing
Microservices Patterns

Mitrais is a world-class technology company based in Indonesia and part of the
global CAC Holdings Group. Founded in 1991, we have developed and implemented

software for over 700 clients, and we are committed to building long-term and high-
trust relationships. www.mitrais.com

Mitrais

Table of Contents

1. Introduction
2. Microservices Pattern

3. Conclusion

04
08
27

Whitepaper

Mitrais Whitepaper Page 03

Abstract

Microservices architecture has become a popular application architecture to build new or modernize existing legacy
applications. Microservices architecture offers independent deployment and scalability of application modules, which
can reduce downtime and allow teams to maintain a smaller code base. However, not all companies that adopt
microservices architecture achieve outcome they want. This paper will outline the definition and benefits of a
microservices architecture,and expand on the microservices patterns which will reduce the risk of failure when

Implementing a microservices architecture.

Mitrais Whitepaper Page 04

1. Introduction

There is no clear and consistent definition of microservices architecture. Some have tried to define microservices
architecture; for example, Chris Richardson stated, “Microservices - also known as the microservice architecture - is an
architectural style that structures an application as a collection of services that are highly maintainable and testable;
loosely coupled; independently deployable; organized around business capabilities; owned by a small team”.

Martin Fowler wrote, “Microservice architectural style is an approach to developing a single application as a suite of
small services, each running in its own process and communicating with lightweight mechanisms, often an HTTP
resource API. These services are built around business capabilities and independently deployable by fully automated
deployment machinery”.

From these two definitions, we can see that there is no general consensus as to what microservices architecture
encompasses.

What we can observe from industry definitions is that microservices have certain consistent characteristics:

e Small in size (more on this later)

e Focussed on one task

o Aligned with a bounded context; and
e Autonomous

Mitrais Whitepaper Page 05

11 Microservices Characteristics

1.1.1 Small

The definition of small is relative. This could be the number of lines of code in the application, the number of team
members working on the application, size and weight of the application or a range of other measures. James Lewis,
Technical Director at Thoughtworks, stated that “a microservice should be as big as my head.” This definition is
ambiguous at first, however, the idea is that a microservice should be small enough to be understandable by the team
assigned to it. Dave Farley, the author of “Continuous Delivery” stated that “If you could rewrite it in a week or two,
then that is how should small a microservice is”.

1.1.2 Focus on One Task

This is related to the ‘Separation of Concern’ principle to organize applications into defined sections, so that each
section addresses a specific concern. In microservices, the sections are directly related to problem domains.
Therefore, each microservice should focus only on tasks in one single problem domain.

1.1.3 Aligned with a bounded context

‘Bounded Context’ is an idea that comes from “Domain Driven Design” as presented by Eric Evan in his 2003 book. He
explained that a ‘Bounded Context’ is a defined part of the software where particular terms, definitions, and rules apply
In a consistent way so that it makes a cohesive unit. Although this concept can be applied to any context, in
microservices this is key because it provides a clear boundary with which to align the elements that make up the
microservices.

Mitrais Whitepaper Page 06

In traditional development, applications are broken
down into smaller technical services - however, this
does not qualify as microservices because it is not
aligned with the ‘Bounded Context’ principle, and
creates coupling between the services themselves.

11.4 Autonomous

What makes microservices autonomous is that any
implementation changes can be applied without
coordinating with other microservices across the
application. This allows microservices to scale
enormously in an organization and this provides the
greatest opportunity for delivering value In
iImplementing microservices. However, this is also the
part that is often misunderstood when implementing
microservices. Developers frequently claim that they
are implementing this architecture, but they must also
build, test, and deploy the microservices together,
which runs against the foundational principle of the

architecture.

Mitrais Whitepaper Page 07

1.2 Microservices Adoption

More and more companies are adopting microservices. Based on the “Cloud Microservices - Global Market Trajectory &
Analytics” report from Research and Market, the microservices market will grow 19.2 percent over the period
2020-2027 which is equates to about US$2.8 Billion. This is because companies want to take advantage of the benefits
of microservices, such as allowing teams to implement or change features without impacting other services and getting
to market faster because teams only need to change a small portion of the applications. However, adopting
microservices is quite challenging. O'Rellly in their “Microservices Adoption in 2020” survey found that 10% of the
respondents reported “complete success”, 54% reported being “mostly successful”, and 92% reported “at least some
success”. While adoption is growing, it would appear that not all companies have achieved a successful microservices
implementation.

The biggest challenges that the respondents to the “Microservices Adoption in 2020" survey mentioned are
decomposition and complexity. At first, decomposing a large application sounds easy - however doing it the wrong way
will only create other problems, like creating a coupled distributed application, creating increased complexity. As a
result, rather than utilising microservices, the app ends up as a distributed monolith, which does not offer the benefits
of the microservices architecture. To minimize the risk of failure, there are several microservices patterns that can be
used as an approach to adopting a microservices architecture. These patterns outline the strategy that is used as
common architecture by companies that have already adopted microservices, such as application decomposition
strategy, data handling, and deployment strateqgy.

Mitrais Whitepaper Page 08

2. Microservices Pattern

2.1 Decomposition Pattern

One of the microservices characteristics is that they should be small. This is achieved by decomposing large
applications into smaller, specific microservices. The challenge then lies in identifying how small each microservice
should be. If it is too large, then it will create monolith application challenges, like:

e Longer build time

e Longer deployment time

e Challenging change implementation

e Increased development team capacity required

But if each microservice is too small, you are faced with:

o Complex integration between services
e Coupling of services

Microservices that are too small are a signal that during the decomposition process, the organisation was focused only
on the representation of data, not the behaviour of the services. There are several patterns that can be used to help
decomposing services that will help mitigate the risks outlined here.

Mitrais Whitepaper Page 09

2.1.1 Decompose by Business Capability

This pattern decomposes services corresponding to broad business capabilities. James Denman stated that “A
business capability is an expression or the articulation of the capacity, materials, and expertise an organization needs in
order to perform core functions”. In other words, a business capability is something that the business does to generate
value for themselves, or their clients.

Commercial Customer Finance

Banking Relationships & Controlling

The above picture is an example of the business capabilities of a bank. Each of the business capabilities represents the
problem domain of the application. It becomes clearer as to how to identify how many services the bank will have to
build into their applications as microservices, and how big or small the services will become.

Mitrais Whitepaper Page 10

2.1.2 Decompose by Subdomain

In more complex organizations, decomposing microservices by their business capabilities might not enough. This is
because one business capability could contain a large amount of functionality, and so decomposing by business

capability and then again into its subdomain is necessary.
Commercial Banking Customer Relationships Finance & Controlling
Accounting

Cash Management Complaints Management

Corporate Financing Contract Management Asset Management

Credit Management Customer Engagement Controlling
Deposit Management Customer ldentity Management Payroll

Pensions Management Customer Management

Settlements & Payments
Syndicated Loan Management Customer Scoring

Tax Management

Wholesale Trading Customer Support & Education Treasury

Order Management

Here we see an example of functionalities inside the business capability that represent the subdomain of the problem

domain. Think about it as subsystems inside the system, creating smaller and more specific microservices that can run
and be maintained independently.

Mitrais Whitepaper Page 11

2.1.3 Service per Team

In @ Service per team pattern, each of the business capabilities is owned by a single team, and ideally, each team only
maintains, builds and operates one service. The size and complexity of the service is scoped to the team’s capacity.

Service A ServiceB

O o O Collaborate O o O

(Q)———0)

Team A TeamB

The drawback of this pattern is that implementing features that span services is more complicated and requires teams
to collaborate, which can slow build time and add to the volume of work. This pattern is more suitable for more digitally
mature organizations, and it is recommended to start with Decompose by Business Structure and Decompose by Sub
Domain first, and then assign the build of any microservice to each team by problem domain.

Mitrais Whitepaper Page 12

2.2 Data Management Pattern

Most applications require data as an input, and produce
data as an output, while the data processing itself might
involve persisting the data or retrieving data from
another source. In a monolithic architecture, this can be
achieved by providing data storage that can be
accessed by any components inside the application.
However, in microservices this can be challenging
because each service no longer resides in the same
application. There are several patterns that can be used
to allow for data processing and retrieval from a variety
of sources:

2.2.1 Database per Service

This pattern aims to make services loosely coupled by
providing each service with its own data storage so that
they can be developed, deployed, and scaled
iIndependently. Each service can then have a different
type of data storage optimized for their usage, for
example RDBMS, graph, or NoSQL.

Mitrais Whitepaper

Page 13

There are three common approaches to database storage that are commonly used in microservices.

v = Servers (1)

~ &) PostgresQL 11 v = dvdrental
v == Databases (4)
¥ Casts
> = mydb »
> == otherdb ’Catalogs
> == postgres » uj_: Event Tfigws
> &b Login/Group Roles b
> B Tablespaces > ﬁ Extensions
> &= Foreign Data Wrap
> = Languages
v @ Schemas (6)
One database per service > @ accounting
Each service will have its own > & finance
database isolated from other » &> marketing
services to ensure that only » & public
the services that are » & sales
responsible for the data
> & scm

output will manage the data.

One schema per service

All services will use the same database;
however, each service is assignhed a
specific schema.

Private tables per service

All services utilise the same database
and schema; however, each service is
assigned a specific table.

Mitrais Whitepaper Page 14

2.3 Communication Pattern

It's a common practice in microservices that each service has its own data storage. But it's also not unusual to see that
one service might need to access data from other services. One could share the data storage of one service so that

other services can access the data, but this is considered an anti-pattern, creating coupling between the services and
removing the value of the microservices.

Communication patterns can then facilitate this scenario, where one service needs to communicate with others to
perform its task whether that's in the form of sending or receiving data. There are several patterns available that can be
used for this and avoid coupling between each service and maintain the integrity of your microservice architecture.

Mitrais Whitepaper Page 15

2.31 Domain Events

A Domain Events pattern aims to resolve the communication problems by providing a specific mechanism to share the

data, without sharing the data storage by publishing any activities that happened inside one service. The activities
could be data modification, creation, or deletion.

This pattern uses an event-driven approach, where each service publishes domain events for any domain activities that
happened, such as when new data is created. Other services subscribe to the domain events and store the data for
their own usage individually, which can be achieved through any asynchronous process, like an event bus.

Mitrais Whitepaper Page 16

2.3.1 APl Composition

In some scenarios, there is a need to retrieve data across multiple services and aggregate the data, such as when
generating a report. In this case, an APl Composition pattern should be used. This pattern uses a “composer” as a
component that will retrieve data from multiple services and aggregate them as necessary.

Composer

It is recommended to use asynchronous processing to avoid blocking calls, which will reduce the performance.
Asynchronous processing calls to other services will be performed without waiting for other calls to finish first.
Aggregating the data is performed after all asynchronous calls are finished.

Mitrais Whitepaper Page 17
2.4 Transactional Patterns

A transaction is a single unit of work that contains one or more processes, which should result in all processes being
completed, or nothing at all. This concept is typically used in the database system to guarantee the consistency of the
data. In monolithic applications, this is automatically managed by the database system, however, in microservices each
service has its own database. Therefore, each transaction can be automatically managed by the database system if the
transaction is performed in a single service. This is referred to as ‘Local Transaction’

If the transaction spans across multiple services, then a global transaction is needed, which could be achieved through
something like Saga as outlined below.

Mitrais Whitepaper

2.4.1 Saga

Page 18

This pattern was first introduced by Hector Garcia-Molina in his paper “Sagas”. He explains that Saga is a long-lived
transaction that can be written as a sequence of transactions that are interleaved with other transactions. In other
words, Saga breaks a global transaction into multiple local transactions. There are two styles of Saga implementation -

Choreographed and Orchestrated.

 Choreographed Saga
In a Choreographed saga, each local transaction publishes events that
trigger local transactions in other services. This means that one service can
publish an event that will be subscribed to by other services to create
another local transaction. If one of the services failed to process the local
transaction, they should publish a compensating event that tells the other
participating services to undo the transaction.

o Orchestrated Saga

In an Orchestrated saga, each local transaction is managed by an
orchestrator. The orchestrator resides in the service that initiates the
transaction. The orchestrator will publish a specific event for a specific
service which tells the service to create a local transaction. If the transaction
failed, the participating services would publish an event to inform the
orchestrator, then the orchestrator will publish a compensating event that
tells the other service to undo the transaction.

event compensating event

Saga Orchestrator

Command Event 1
Command Event 2

Mitrais Whitepaper Page 19

2.5 Deployment Pattern
For a Deployment Pattern, there are several approaches that can be used:

o Multiple services per host, and all services are deployed into one host
machine.

e One service per host, and each service is deployed as one host machine.

e One service per VM, and each service is deployed as one virtual machine.

e One service per container, and each service is deployed as one container.

The recommended approach is to use one service per container. As stated In
the “Microservices Adoption in 2020” survey from O'Reilly, almost half (49%) of
respondents who describe their deployments as “a complete success” also
deploy most of their microservices (75-100%) in containers. The maijority (83%)
of respondents who describe their microservices efforts as “Not successful at
all” are using some means other than containers to create their instances.

Containerization technology was originally developed in 2004. However,
Docker popularized this technology in 2014 and now it has become best
oractice when deployingmicroservices. The graphic below outlines a brief
nistory of Containerization technology.

Mitrais Whitepaper Page 20

* cgroups » Docker development start » Open container projectcreated * AWS EKS & Azure AKS released
Google use containerization Linux containerization, integrates with » Kubernetes 1.0 released * 95% new application use containers
at scale Windows & Mac « Mirantis acquires Dockers, Inc.
2023 Prediction
Application containers
2008 2014 2017 software market to top $5.5

billion (451 Research)

2025 Prediction
2004 - 2007 2013 2015 2019 Container market value to

top $8 billion (Grand view
research)

Docker 1.0 released « Pivotal integrates K8S with Cloudfoundry
Kubernetes project announced Windows add support to run containers
Canonical launches LXT « Azure container support Linux container
CoreOS introduce rxt as docker 1$ billion market across 125 vendors
alternative

« Cgroups merge into Linux kernel
* LXC released

Linux container based on cgroups, isoclate
resources without VM

There are several reasons why containerization technology is best practice for microservice architecture:

e Less Overhead, it uses a shared kernel (operating system) with the host machine.
e Portable, it can be easily deployed to multiple different operating systems.
e |solated, each container is isolated from the others even if it is deployed in the same host machine.

Mitrais Whitepaper

Conclusion

Although microservices offer great advantages, they also introduce high
levels of complexity to the architecture and can increase the failure risk.
Microservices patterns aim to tackle this complexity and minimize the
risks associated with microservices development and to give guidance
on how to adopt a microservices architecture. None of this should veer
organisations from moving towards a microservice architecture, as the
value benefits are so great from speed of deployment to ongoing
maintenance of code. Instead, developers, scrum masters and those
looking to decompose a monolithic application should go into the project
eyes wide open and consider the structure of deploying this architecture
In your organisation before a single line of code is created. This is key to
delivering on the incredible benefits of Microservice architecture.

If you are considering adopting a microservices architecture in your
organisation Mitrais highly recommends revisiting the references below
and adopting the Microservice patterns described in this paper.

And always remember Lewis's Zen Koan, “a microservice should be as
big as my head!”

Page 21

Mitrais

Whitepaper

About Mitrais

Mitrais is a world-class technology company based in
Indonesia and a part of the global CAC Holdings Group. We
have been recognized as Indonesia's leading provider of
offshore development services by Forrester Research, and
our goal is to help your business meet and exceed your
expectations. Combining Western innovation with Eastern
productivity, Mitrais maintains its preeminent position in
the Asia Pacific region. As a member of the Microsoft
Partner Network with a Gold Application Development
competency, we demonstrate the highest level of
competence and expertise with Microsoft technologies.
Our close working relationship with Microsoft enables us to
deliver exceptional software development services.
Through collaboration with trusted partners and our team
of talented software engineers, we are committed to
providing outstanding solutions to our valued clients.

Page 22

Resources

. Cloud Microservices - Global Market Trajectory &

Analytics. Research and Market. https://
www.researchandmarkets.com/reports/4804268/

cloud-microservices-global-market-trajectory

. Denman, James. Business Capability. Tech Target.

https://www.techtarget.com/

searchapparchitecture/definition/business-

capability

. Evans, Eric. 2003. Domain-Driven Design: Tackling

Complexity in the Heart of Software. Addison-
Wesley Professional

. Fowler, Martin. Microservices. MartinFowler.com.

https://martinfowler.com/articles/

microservices.html

. Hector et al. 1987. Sagas. Princeton University
. Lewis, James. Scale, Microservices and Flow.

Codecamp. The One with Architecture. https://
codecamp.ro/architecture-conference-february

. Mike et al. Microservices Adoption in 2020. O'Reilly.

https://www.oreilly.com/radar/microservices-

adoption-in-2020/

. Richardson, Chris. Microservices Pattern.

Microservies.io. https://microservices.io

[T 11 AlS | cacHoLomes srour

Terima Kasih Thank You HOWKEeSTIVWELT:

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23

