mlTrals continuous commitment

MEMBER OF CAC HOLDINGS GROUP

Flutter: A Comparative Analysis

Flutter VS Xamarin VS React Native
VS lonic VS Cordova VS Kotlin
Analytics

FEB 2022

VER.O.1

Table of Contents

IR [01 o Yo [U Tox 1 T] o PP PPPPPPPPPPP 3
2. Evaluated PlatformS. ..o 3
G T O 1 oY= g o = o] 1 B3OSR 4
4. EVAIUALION CrItBIIA cooiiie e 4
5. Evaluating Application Development Frameworks ... 5
5.1.1 LU PR 5
LS00 A €= 11 = o 1 SRS 5
5.1.3 REACTE NALIVE...ciiiiiiiiiiii 6
51.4 0o o P 7
D515 COTUOVA it 7
5.1.6 0 11 T P 8
B. CONCIUSION Lo 10

L0707 077 1o | o | A 12

1. Introduction

Flutter is a cross-platform application development toolkit developed by Google. The
popularity of Flutter is imminent as it enables faster development, with a flexible Ul and
customization, including the creation of natively compiled applications across platforms
such as mobile, web, desktop, and embedded devices with the help of a single codebase.
Flutter applications are developed using Dart, which is a simple object-oriented
programming language. Currently, Google uses Flutter for some of its most popular
applications, namely Google Assistant, Google Home Hub Ul, and much more. Nearly
50,000 Flutter-based applications are available in Google Play Store, and the nhumbers
are increasing at a staggering rate. In addition, BMW, eBay, Alibaba Group, Capital One
are some popular companies that use Flutter to give their web applications an appealing
look and provide an excellent user experience.

The significance of cross-platform app development is gaining traction, and the reason
behind its rising demand is faster development and quicker time-to-market, reduced costs,
and the use of a single codebase for various platforms. As a result, several organizations
are opting for cross-platform development frameworks and technologies, but the debate
over the appropriate choice of framework continues to prevail. In recent years, various
frameworks and technologies have been at the forefront of application development, but
each consists of varying attributes that make them differ from one another. Therefore,
evaluating the application development frameworks requires a developer's perspective to
understand the effectiveness of the frameworks.

From a developer's standpoint, the critical criteria for the evaluation include:
License Cost

Long-term Feasibility

Extensibility

Learning Success

Documentation and Support

Development Effort

Maintainability

Nouo,rwdhE

This paper provides a comparative analysis of how Flutter performs against some of the
existing application development frameworks, emphasizing the key considerations
highlighted from a developer's perspective.

2. Evaluated Platforms

No. Platform

Flutter

Xamarin

React Native

lonic

Cordova

@k~ lw N IE

Kotlin

Table 1 — Evaluated Platforms

3. Other Platforms

Other platforms, which are not evaluated but may be included in the future are listed below:

e N/A

4. Evaluation Criteria

The evaluation of app development frameworks is best proposed by one of the frequently
cited papers on evaluation criteria by Heitkotter et al. (2013). The overview of these criteria
can be understood comprehensively from the sections hereunder.

1.

License Cost

There are various costs incurred to develop and publish commercial applications
using a framework. An ideal case is using an open-source framework, but it tends to
be complicated for commercial and closed-source projects. Moreover, some of the
licenses have a severe impact on cross-platform development. It is widely known that
different licenses allow different things, which provide various restrictions on licensed
projects and distribution. Therefore, the direct costs are accrued for purchasing
licenses, renewal, and additional tools.

Long-term Feasibility

The investment decisions on an appropriate framework are crucial as restrictions on
how the source code of the applications can be used are tied to a framework. From a
developer's perspective, the preferred framework must be available for the long term.
In addition, a framework requires continuous updates as web technologies and
browsers are rapidly evolving. Therefore, long-term feasibility is determined by
popularity, updates, and the development team. For example, popularity indicates that
the developers' community recognizes the framework due to possible short update
cycles and bug fixes.

Extensibility
The term extensibility is associated with the evolution of the framework according to
the changing environment. Therefore, extensibility is crucial for developers in terms
of additional functionality and plugin mechanisms to provide stability and increase its
usefulness.

Learning Success

The time and effort required to understand and implement a framework for
development affect the suitability for commercial uses. In addition, the ease of
comprehensibility to learn new concepts at the initial process determines adaptability.

Document and Support

For a successful framework, the documentation highlighting the necessary guidelines,
functionalities, APIs for developers to master a framework is essential. Therefore,
good quality documentation with additional resources and tutorials for reference is
critical to understand the usability of a framework.

6.

Development Effort

The development efforts determine the overall cost of an application. From
familiarizing with the framework to implementing applications, the developers require
easy syntax, reusability of codes, and additional support, alongside debugging

functionalities.

Maintainability

Web applications require regular updates to provide more stability to applications.
Therefore, this indicator is inter-related with the comprehensibility of codes that can
allow developers to maintain the performance of the applications over a longer time

frame.

5. Evaluating Application Development Frameworks
5.1.1 Flutter

No. Criteria

1.

License Cost

‘ Evaluation

Cost-effective.

2.

Long-Term Feasibility

More popular and has more scope in the future. In
addition, there is good support for new plugins

Extensibility

Flutter is designed in the form of an extensible, layered
system. Moreover, the widgets are centric with the
potential to evolve into a robust Ul creation
environment. The hot reload feature is a bonus for
developers with various customizations.

Learning Success

Easier learning curve.

Document and Support

There is clear and precise documentation with
continuous growth in the developers' community.

Development Effort

Reduced code development time with various features
and widgets. Besides, it is easier for developers to learn
the framework.

Maintainability

The framework is evolving rapidly; therefore,
maintenance is challenging in the long run.

5.1.2 Xamarin

No. | Criteria Evaluation

1.

License Cost

Table 2 — Flutter

Expensive to purchase Microsoft Visual Studio IDE for
commercial-scale development.

Long-Term Feasibility

Better development tools for faster development, but
the increased cost may hamper its feasibility. In
addition, there is a lack of immediate support for third-
party tools for the latest iOS and Android releases.

Extensibility

Native Ul components with a cost factor and longer
time to adjust to new versions. However, using
Xamarin. Forms built-in layouts, controls, and pages
allow designing applications from a single API that is
highly extensible.

Learning Success

Steep learning curve.

Document and Support

Good documentation with limited community support.

Development Effort

More tools and sufficient documentation makes it
easier for developers. However, the learning curve is a
significant problem area.

Maintainability

Xamarin is a more mature framework than Flutter, and
it receives continuous support from Microsoft, which
makes long-term maintenance more manageable.

5.1.3 React Native

No. | Criteria

1.

License Cost

Table 3 — Xamarin

Evaluation

Cost Efficient.

Long-Term Feasibility

React Native is among the top mobile application
development framework, and the applications built
using React Native are considered stable, reliable and
ensure faster development of applications. Moreover,
new codes to a running app and faster debugging make
it worthy of long-term consideration.

Extensibility

React Native applications are currently compatible with
Android and i0S, with different expectations of building
compatibility with other platforms like Windows, Linux,
or macOS. In addition, react Native offers specific
components like React Native Bit and Navigation that
allow customization and layer-based extensibility.

Learning Success

Wide range of tutorials and libraries to allow quick and
easy development and increases comprehensibility.
The learning curve is more straightforward for
developers with React or JavaScript experience.

Document and Support

Good documentation and availability of support from a
growing community.

Development Effort

Various companies use mature frameworks; therefore,
several packages are readily available, and platform
inherent features are simpler to implement.

Maintainability

Continuous support by Facebook with libraries, tools,
Ul, and a robust community ensures maintainability. In
contrast, React Native lacks platform-specific modules

and smooth navigation compared to cross-platform
development, leading to application issues.

Table 4 — React Native

5.1.4 lonic

No. | Criteria Evaluation

Significant costing exists with various plans and

1. License Cost
charges.

lonic is not suitable for building complex applications
and to include intricate functionalities in the
applications. Furthermore, there is a likelihood of
2. Long-Term Feasibility encountering challenges in terms of adding image
processing features and animations. Thus it is ideal for
simple applications and may not be feasible for large-
scale organizational requirements.

The provision of ready-made components, typography,
and base themes are extensible to adapt to a different
platform and well-known to provide efficient scalability.
Moreover, due to the uses of Angular, various modules
allow construction components for the applications to
support modularity.

3. Extensibility

Developers with the knowledge of Angular and
4, Learning Success JavaScript, CLI, HTML, and CSS will adapt faster with
an easy learning curve.

Concise documentation with an increasing developer

5. Document and Support .
community.

The use of a capacitor saves a significant amount of

6. Development Effort developmental time.

No additional testing devices are required, which
makes it relatively easy to maintain. On the contrary,
the absence of hot reloading features, performance
issues with memory-intensive apps, and security
issues make the overall maintainability challenging for
specific functionalities.

Table 5 = lonic

7. Maintainability

5.1.5 Cordova

No. | Criteria Evaluation

The unique mobile platform-related developer program
1. License Cost enrollment is free to use, with the cost accrued for
deploying applications to these platforms.

Cordova provides a myriad of solutions for access

2. Long-Term Feasibilit . : . e
g y device features through native plugins. In addition,

there is support for multiple third-party plugins, and
developers can run their plugins. With multiple
functionalities and from the cost perspective, long-term
feasibility can be considered. However, specific issues
require to be evaluated before finalizing this framework
for a long-term purpose.

Extensibility is well-supported across platforms and
3. Extensibility does not require reimplementation with different
platform languages or toolsets.

There is a smaller learning curve with easy-to-learn

4 Learning Success functionalities and setup.

There is a lack of appropriate documentation and
community support. As a result, the phone Gap Build
5. Document and Support | has been discontinued as of 2020. However, after
Adobe System has taken over Cordova, community
support is improving.

Before the takeover by Adobe, Cordova lacked proper
documentation, and it has caused a significant drop in
its popularity as developers found it difficult to
6. Development Effort understand the framework without proper community
support and documentation. With the emergence of
Flutter, Cordova supporters are waning with a
possibility to decrease further.

The performance of Cordova applications is slower
than native applications and tends to crash, and
challenging to debug immediately can be tricky when it
comes to maintainability.

Table 7 — Cordova

7. Maintainability

5.1.6 Kotlin

No. | Criteria Evaluation

Very expensive to build applications using Kotlin.
1. License Cost Additional charges are applicable when using Kotlin
SDK with semi-native functionalities.

The possibility of interoperability with Java and code-
sharing functionality makes it a unique and user-
friendly application development language. Moreover,
additional features and automation make it one of the
most feasible development languages concerning long-
term consideration.

2. Long-Term Feasibility

Creating a functional application with Kotlin that
supports modularity and is easy to test is more
effortless. Moreover, multiplatform programming is
Kotlin's key area which makes it flexible and extensible.

3. Extensibility

Easy to learn with a simple syntax similar to other

4. Learning Success programming languages such as Java or Swift.

Documentation is concise, but community support is

. Document and Support limited as it is a new alternative.

As Kotlin is new, familiarity with technical stacks and
components is essential. In addition, there is a need for
6. Development Effort utilizing several native components and additional
development resources, which increases the cost of
development in terms of time.

Despite the simplicity of the syntax and easy learning
curve, various features are not supported, such as hot
reload. Additionally, support for libraries is constantly
7. Maintainability being developed and evolving. Therefore,
maintainability is tricky in the current context but has
scope for improvement as Google supports it
constantly grows.

Table 8 — Kotlin

Staying ahead of the competition in the fast-paced technology industry requires a business to
implement every tool at its disposal to provide the best user experience. Therefore, mobile
applications are critical for a business to set its footprint in the market segment. Developing a
robust mobile application is thus essential with the right tools, libraries, and associated
software development kits, which can be achieved with the right choice of a mobile
development platform.

Mobile application development frameworks are used for developing and deploying mobile
applications, which are critical assets for the business. On the one hand, while selecting a
framework, scalability, security, speed, usability, cross-platform support, offline mode
operability are some of the most sought features before finalizing a framework for an
organization. On the other hand, the criteria catalog highlights some key areas from a
business and developers' perspective, including licensing cost, long-term feasibility,
documentations, support, maintainability, and extensibility of the framework to incorporate
new updates without affecting the performance of the applications. However, the primary
question prevails on how to select despite the various criteria available. Firstly, it begins from
the managerial decisions of the business and the targeted market that defines the choice for
the development framework.

There are two primary types of mobile development frameworks, namely native maobile
development framework and cross-platform development framework. The development of
native applications is specific to a platform, whereas cross-platform applications can work on
multiple platforms and operating systems.

Why opt for an application development framework and the factors to consider?

The development frameworks generally clarify the mobile software development lifecycle
(MSDLC), including planning, analysis, designing, development, testing and security,
deployment, and maintenance. These frameworks assist developers during different phases
of the development lifecycle. However, it is essential to understand that different frameworks
have different features that benefit the developmental process to speed up the development.

Finally, the factors to consider while selecting a development framework over another includes

e Platform, which is the most crucial aspect for the choice of a framework. Typically, the
industry-oriented platform is Android OS, which is home to various applications worldwide
that targets smartphones, wearables, tablets, and much more. In addition, the Apple OS
platform is another popular platform for various Apple products.

e Speed is critical for applications to operate efficiently without lags to create a smooth user
experience. For example, gaming applications require the maintenance of a certain speed
to operate without compromising performance. Thus, the developers require a framework
that can provide the codes and libraries to include additional functionalities vital for the
application to maintain optimal performance.

e The cost of development determines which development framework to integrate.
Therefore, the cost factors need to be assessed, alongside the expected financial gains
from the application, before opting for a framework.

¢ In the digital landscape, the risk of data breaches remains a constant threat. Therefore,
the nature of applications determines the framework. For example, the applications of
high-end organizations in the e-commerce platform or the banking applications with
payment gateways require a robust and secure framework that can ensure a secured
environment in the long term.

¢ When the best framework debate occurs, the scope of a mobile application development
framework delves into the efficiency factor. Therefore, it is of utmost importance for the
frameworks to provide code patterns, plugins, and tools that can ensure high-quality
output of the end product with faster development time and market-ready applications.

¢ Finally, the most crucial factor is the future enhancement of the applications with security
patches, upgrades, updates, and bug fixing to maintain a high-quality user experience
after deployment.

6. Conclusion

The best framework debate has waned over the years. With different perspectives from
developers and business leaders, choosing the appropriate framework is no longer
challenging. Based on the business requirements and the target market, the framework can
be chosen. However, a critical consideration is the flexibility of the framework in the future.
The trends in mobile development have witnessed a paradigm using codes, scripts,
integration, development methodologies, and deployment.

Furthermore, each framework offers several advantages and disadvantages that determine
the feasibility in the long run. Moreover, in the era of open-source technology, the availability
of excellent developer community support remains an everyday necessity across frameworks.
While sure developers are more confined to a particular programming language, the choices
of the frameworks are determined by which the framework supports programming language.
Finally, the code reusability and more accessible learning curve with readily available
documentation determine the framework's popularity. Over the years, the frameworks with a
lack of support documentation have been surpassed in terms of popularity as larger

companies are taking over the development frameworks, emphasizing the readability of
documentation and usability. In a nutshell, there is no particular approach on the best
framework. The business requirements coupled with community support, pricing structure,
and security assurance with flexibility for enhancements will remain the fundamental
requirements.

Overall, mobile development is passing through an exciting transformation from native to
hybrid development and web applications. However, it remains to be seen how each
framework adapts to the most sought-after technologies such as artificial intelligence and the
Internet of Things (IoT) to provide smart services and better automation, and improved user
experience. Perhaps, the debate over the best framework will be decided based on which of
the frameworks integrate these advanced technologies in the future to provide a seamless
experience to the end-users.

Copyright

Copyright © 2022 Mitrais

Disclaimer

All rights reserved.

Any and all information in this document has been
compiled and provided for information purposes only.
The information provided herein may include
information compiled from a variety of third parties.
Mitrais will not be liable for any loss, damage, cost
or expense incurred in relation to or arising by reason
of any person relying on the information in this
document or any link to any website provided herein,
whether or not caused by negligence on Mitrais’
part. While Mitrais endeavours to provide the
information up to date and correct, Mitrais make no
representations or warranties of any kind, express or
implied, about the accuracy, reliability,
completeness or currency of the information or its
usefulness in achieving any purpose. Readers of
this document are responsible for assessing its
relevance and verifying the accuracy of the content.
In any event, the information provided herein should
not be construed as providing advice whether legal
or otherwise.

