

MITRAIS WHITE PAPER
GOOGLE FLUTTER COMPARISON WITH

NATIVE MOBILE DEVELOPMENT

VER.1

White Paper Google Flutter
Comparison with Native Mobile
Development ver.1

Confidential © Mitrais 2 / 14

Table of Contents

Table of Contents .. 2

Table of Figures .. 3

1. Overview .. 4

2. Evaluated Platforms .. 4

3. Other Platforms ... 4

4. Evaluation Criteria .. 4

5. Platform Evaluation .. 7

6. Framework Recommendation ... 8

7. Conclusion .. 13

8. References .. 13

Copyright .. 14

Copyright © 2018 Mitrais ... 14

Disclaimer ... 14

White Paper Google Flutter
Comparison with Native Mobile
Development ver.1

Confidential © Mitrais 3 / 14

Table of Figures

Table 1 – Evaluated Platforms ... 4

Table 2 – Non-Feature Related Criteria ... 5

Table 3 – Feature Related Evaluation Criteria ... 7

Table 4 – Platform Evaluation.. 7

White Paper Google Flutter

Comparison with Native Mobile
Development ver.1

Confidential © Mitrais 4 / 14

1. Overview

This White Paper was developed to evaluate Google Flutter (a Google’s mobile UI

framework for developing high-quality native interfaces on iOS and Android in record

time) against native mobile development (Android and iOS Swift).

We decided to publish this evaluation to provide early information of Google Flutter

that might suit any prospective client(s) and for internal documentation.

2. Evaluated Platforms

PLATFORM VERSION
PLATFORM

1 Google Flutter 0.3.5 beta 2

2 iOS Swift native Swift 4

3 Android Java native Java 7 / 8

4 React Native 0.55

Table 1 – Evaluated Platforms

3. Other Platforms

Other platforms which are not evaluated but may be included in the future are listed

below:

• iOS Objective C native

• Android Kotlin native

4. Evaluation Criteria

The evaluation criteria are based on “Mobile Web-App Framework Evaluation

Standard” that were proposed by Heitkotter, et all (2013). The evaluation consists

of two points of view. First is the standard from the developer’s perspective and the

second is the standard from the user’s perspective. There are seven standards from

the developer’s viewpoint and four standards from the user’s viewpoint.

The developer’s viewpoint standards are:

1. License and Costs

Does initial cost occur to introduce framework?

2. Long-term Feasibility

Is it a framework that can be managed and used continuously?

3. Documentation and Support

Is it well documented and supported for a developer?

4. Learning Success

Is it a framework where the concept is already familiar to the developer?

5. Development Effort

Does a configuration such as development environment help a developer

minimize the effort of development?

White Paper Google Flutter

Comparison with Native Mobile
Development ver.1

Confidential © Mitrais 5 / 14

6. Extensibility

Is it possible to extend a framework?

7. Maintainability

Are source codes well modularized?

The user’s viewpoint standards are:

1. User Interface Elements

Is UI composition optimized for a mobile application?

2. Native Look and Feel

Does the framework give the same experience that native application does?

3. Load Time

Does it provide the same loading time as a native application?

4. Runtime Performance

Is its response time short and of high performance?

NB: This document uses a weighting schema which is currently relevant for Mitrais

use.

4.1. Developer’s View Point Evaluation Criteria

CRITERIA MITRAIS WEIGHTING

License and Costs 40

Long-term Feasibility 40

Documentation and Support 30

Learning Success 40

Development Effort 50

Extensibility 30

Maintainability 40

Table 2 – Developer’s View Point Evaluation Criteria

Criteria used:

1. License and Costs

Costs for obtaining a framework and employing it in commercial apps influence

whether a framework is suitable for a certain app or a particular company. Hence,

this criterion examines licensing costs that accrue for developing and publishing

a commercial app based on the respective framework.

2. Long-term Feasibility

The decision for a framework represents a significant investment because specific

know-how needs to be acquired and source code of apps will be tied to the

framework. Hence, developers will prefer a framework that will most likely be

available in the long term. A framework needs continuous updates, especially in

view of rapidly changing browsers and Web technologies. Indicators of long-term

feasibility are popularity, update behaviour, and the development team.

Popularity can be assessed through a high diffusion rate among app developers

and recognition in the developer community, for example through reviews. A

positive update behaviour is marked by short update cycles and regular bug-

fixes. A framework with a strong development team, ideally backed by several

commercial supporters, is more likely to continue to exist in the future.

White Paper Google Flutter

Comparison with Native Mobile
Development ver.1

Confidential © Mitrais 6 / 14

3. Document and Support

Documentation and further support channels assist developers in learning and

mastering a framework. Assistance is not only required when starting to use a

framework, but also to efficiently employ its API and advanced concepts.

Therefore, a documentation of good quality provides tutorials and a

comprehensive, well-structured reference. For popular frameworks, textbooks

might provide a good starting point. Besides, other means of support such as

community-driven forums or paid assistance help in case of special problems.

4. Learning Success

Time and effort needed to comprehend a framework directly affect its suitability.

While good documentation may enhance learning success, learning inherently

depends on the inner characteristics of a framework, i.e., its accessibility and

comprehensibility. Hence, the learning success is examined separately. It mainly

depends on the subjective progress of a developer during initial activities with a

framework. Intuitive concepts, possibly bearing resemblance to already known

paradigms, can be mastered quickly. To a minor extent, this criterion also

considers the effort needed for learning new concepts after initial orientation.

5. Development Effort

The cost for developing apps mostly depends on the development effort needed,

assuming a basic familiarity with the framework. While certain development

phases such as requirements elicitation or design are largely independent of the

framework used, it directly influences the implementation. Hence, the

development effort is characterized by the time needed for implementing apps

with the framework. Indicators for a framework that ease development are

expressive power, an easy-to-understand syntax, reusability of code, and good

tool support. The latter includes an Integrated Development Environment (IDE),

which facilitates implementation and possibly GUI design, as well as debugging

facilities.

6. Extensibility

In view of both evolving requirements and a changing environment, it may be

necessary to extend a framework with additional functionality, either during

initial implementation or in later iterations. This will be easier and more stable if

a framework offers corresponding features such as a plug-in mechanism. As a

last resort, app developers might adapt the source code of the framework itself,

provided it is available. Besides considering the existence of extensibility

measures, this criterion assesses their usefulness and accessibility.

7. Maintainability

Mobile apps can and will be updated regularly. Therefore, their implementation

must be maintainable over a longer period. This criterion is positively correlated

with comprehensibility of the source code and its modularity. Both indicators

depend on the framework used to implement the app. A framework that allows

for concise but understandable code will improve comprehensibility. Modularity

requires the possibility to separate different parts of an app into distinct units of

code.

4.2. User’s View Point Evaluation Criteria

CRITERIA MITRAIS WEIGHTING

User Interface Elements 40

Native Look and Feel 30

White Paper Google Flutter

Comparison with Native Mobile
Development ver.1

Confidential © Mitrais 7 / 14

CRITERIA MITRAIS WEIGHTING

Load Time 40

Runtime Performance 40

Table 3 – User’s View Point Evaluation Criteria

Criteria used:

1. User Interface Elements

From an app user’s perspective, elements of the UI should be well-designed and

optimized for mobile usage. Hence, a mobile app framework needs to provide

high-quality elements for important tasks. On the one hand, this criterion

assesses whether a framework offers mobile versions of common structural

elements, i. e., widgets such as buttons or text fields and their layout in

containers, as well as their quality. Structural elements need to address limited

screen sizes and particularities of touch-based interaction. On the other hand, a

framework should support behavioural UI elements such as animations and

gestures

2. Native Look and Feel

User acceptance of a mobile app that is developed with Flutter, also compared to

a native app, often depends on a native look & feel. In contrast to a typical mobile

app with a native UI that has a platform-specific appearance and behaviour. As

this is an often-mentioned requirement of apps, this criterion assesses whether

a framework offers support for a native look and feel. Optimally, a framework

would provide different, platform-specific themes, at least for Android and iOS.

If that is the case, we examine how closely these resemble truly native UIs.

Otherwise, the framework should provide means to efficiently style its UI

elements and implement themes.

3. Load Time

The time required to load a mobile app is important to users in view of slow and

instable network connections on mobile devices.

4. Runtime Performance

The performance at runtime (after loading) informs the overall impression of an

app. The UI elements need to react quickly to user interactions, and animations

should be smooth for a high-quality user experience

5. Platform Evaluation

PLATFORM

Developer’s View Point Evaluation
Score

User’s View Point Evaluation
Score TOTAL

SCORE
1 2 3 4 5 6 7 1 2 3 4

Google Flutter 360 280 240 280 450 270 280 320 240 320 320 3360

iOS Swift native 360 360 270 360 350 270 360 360 270 360 360 3680

Android Java
native

360 360 270 360 350 270 360 360 270 360 360 3680

React Native 360 320 270 360 450 270 320 320 270 320 320 3580

Table 4 – Platform Evaluation

White Paper Google Flutter

Comparison with Native Mobile
Development ver.1

Confidential © Mitrais 8 / 14

6. Framework Recommendation

6.1. Developer’s View Point Criteria

6.1.1. License and Costs

SOLUTION EVALUATION

Google Flutter
Google Flutter is an open source SDK and it is free.

https://github.com/flutter

iOS Swift native

iOS Swift native is an open source programming

language with Apache License Version 2.0

https://github.com/apple/swift. Like another open

source, Swift has free public access.

Android Java native Java is a programming language that is free to use.

React Native

React Native is licensed under MIT.

https://github.com/facebook/react-

native/blob/master/LICENSE

Conclusion:

• Google Flutter: 9

• iOS Swift native: 9

• Android Java native: 9

• React Native: 9

6.1.2. Long-term Feasibility

SOLUTION EVALUATION

Google Flutter

Google Flutter was developed by Google and might have

long-term feasibility. The first beta version was released

on February 27, 2018 at Mobile World Congress 2018.

iOS Swift native

Swift is a successor of Objective-C that was developed by

Apple. Swift reached the 1.0 milestone on September 9,

2014.

Android Java native

Java is the main language used to develop Android

applications. Large parts of Android apps are written in

Java and its APIs are designed to be called primarily from

Java.

React Native

Developed by Facebook and released to the public (v0.5)

on June 6, 2015. After that, at the beginning of each

month, a new release candidate is created off the master

branch on GitHub. Current version (March 2018) is v0.55.

Conclusion:

• Google Flutter: 7

• iOS Swift native: 9

• Android Java native: 9

• React Native: 8

https://github.com/apple/swift
https://github.com/facebook/react-native/blob/master/LICENSE
https://github.com/facebook/react-native/blob/master/LICENSE

White Paper Google Flutter

Comparison with Native Mobile
Development ver.1

Confidential © Mitrais 9 / 14

6.1.3. Document and Support

SOLUTION EVALUATION

Google Flutter

Although it’s a new one, Google Flutter has good and

well-structured documentation and also already has a

Support team. We could not find any textbooks about

Flutter for now. We think it is just a matter of time.

iOS Swift native

Swift has great documentation since it was released

almost four years ago. There are also plenty of free online

tutorials (text and/or video) of Swift. It also has large

community support and some textbooks related to Swift

have already been published. Of course, Swift has a

support team from Apple.

Android Java native

Java Android has great support and documentation. We

could find a number of learning sources, documentation,

forums and textbooks about Java android.

React Native

Facebook creates great documentation, tutorials, blogs

and discussion forums for React Native.

https://facebook.github.io/react-native/docs/getting-

started.html

Conclusion:

• Google Flutter: 8

• iOS Swift native: 9

• Android Java native: 9

• React Native: 9

6.1.4. Learning Success

SOLUTION EVALUATION

Google Flutter

Flutter use a new language called Dart, previously it was

not popular. Also it is still a bit hard to find Flutter best

practice and examples. Sometimes we discovered bugs

that are still in the process of being fixed. Google Flutter

is now growing fast, and it should be easy to find best

practice in a few months or even weeks.

iOS Swift native

IOS swift native is a language that was developed by

Apple to support their own device product. Apple already

has provided complete documentation and a tutorial for

Swift. Since Swift is mature enough and used by a lot of

iOS mobile developers, they have a large community, so

we can ask or search for references on that forum. It

helps us as developers if we are facing issues regarding

Swift language.

Android Java native

Android Java Native uses Java language as its basis; it

is one of the more well-known languages and has many

learning sources. It has a very easy to follow tutorial and

success develop first application.

React Native

React Native uses JavaScript code, CSS-like stylesheets

and HTML-like tags for layout. It makes it easier to on-

board a new developer with basic JavaScript knowledge

to develop native apps quickly. React Native also

provides a user experience that no other JavaScript

based mobile solution has been able to provide before.

https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html

White Paper Google Flutter

Comparison with Native Mobile
Development ver.1

Confidential © Mitrais 10 / 14

Conclusion:

• Google Flutter: 7

• iOS Swift native: 9

• Android Java native: 9

• React Native: 9

6.1.5. Development Effort

SOLUTION EVALUATION

Google Flutter

With Flutter we would only need to build it once and it

would already work in Android and iOS. It significantly

reduces development effort to build an application in

multiple platforms. Less boilerplate compares to native

language. With Hot Reloading, we can even run new code

while retaining the application state.

iOS Swift native

With storyboard in XCode, we can more easily create UI

and manage the navigation for each page in iOS native

application. Obviously, we cannot develop this as an

Android app.

Android Java native

We can easily and flexibly customize an Android widget

using Android Java Native. Obviously, we cannot develop

an iOS app here.

React Native

With the principle of learn once implement everywhere,

we can easily build mobile apps for iOS and Android super

quickly and intuitively. React Native lets us build an app

faster. Instead of recompiling, we can reload an app

instantly. Similarly with Flutter, we can even run new

code while retaining the application state.

Conclusion:

• Google Flutter: 9

• iOS Swift native: 7

• Android Java native: 7

• React Native: 9

6.1.6. Extensibility

SOLUTION EVALUATION

Google Flutter
Flutter enables the creation of modular code that can be

shared easily.

iOS Swift native

Swift supports modular application, so we can create

common modules that may be able to be used by another

application.

Android Java native

Android Java Native supports modular application. We

can create plugins or customize packages for widget or

any Android API.

React Native

React Native uses the same fundamental UI building

blocks as regular iOS and Android apps. We just put those

building blocks together using JavaScript and React. It's

also easy to build part of an app in React Native, and the

other part using native code directly. React Native

combines smoothly with components written in

Objective-C, Java, or Swift.

https://flutter.io/hot-reload/

White Paper Google Flutter

Comparison with Native Mobile
Development ver.1

Confidential © Mitrais 11 / 14

Conclusion:

• Google Flutter: 9

• iOS Swift native: 9

• Android Java native: 9

• React Native: 9

6.1.7. Maintainability

SOLUTION EVALUATION

Google Flutter

Flutter is still in Beta Release and there will definitely be

many updates and changes in the future. Based on

experience, when we develop apps which are in beta

version, it will be a bit hard to maintain the apps.

Also Flutter offers no separation between templates,

styles, and data.

iOS Swift native

IOS app that is developed using Swift is maintainable.

When iOS or Swift have an updated version, Apple will

provide complete documentation about their updates. So,

as developers, it will be easier to maintain.

Android Java native

The maintainability will depend on coding technique. So

far, every Android application that is developed using

Java is maintainable. Because every update of Android

SDK is well documented, it is not hard to maintain it.

React Native

React native has dedicated tools and documentation for

updating application into newer versions. However some

major versions have breaking changes and require a lot

of manual work.

Conclusion:

• Google Flutter: 7

• iOS Swift native:9

• Android Java native:9

• React Native: 8

6.2. User’s View Point Criteria

6.2.1.1. User Interface Elements

SOLUTION EVALUATION

Google Flutter

Flutter has its own UI components, along with an engine

to render them on Android as well as iOS platform. Most

of these components conform to the guidelines

of Material Design and offer complete sets of widgets, for

example buttons, modals, forms, and even built-in

navigators.

iOS Swift native Has a full set of UI components for iOS.

Android Java native Has a full set of UI components for Android.

React Native

React-native already has its own control or components

commonly used in iOS or Android Apps like Navigation

bar, Side Menu, Tab, DatePickers, etc.

http://material.io/guidelines/

White Paper Google Flutter

Comparison with Native Mobile
Development ver.1

Confidential © Mitrais 12 / 14

Conclusion:

• Google Flutter: 8

• iOS Swift native: 9

• Android Java native: 9

• React Native: 8

6.2.1.2. Native Look and Feel

SOLUTION EVALUATION

Google Flutter

Flutter’s widgets incorporate all critical platform

differences such as scrolling, navigation, icons and fonts

to provide full native performance on both iOS and

Android.

Flutter has its own proprietary UI components, along with

an engine to render them on Android (Material Design)

as well as iOS (Cupertino) platforms.

iOS Swift native
Since Swift is the language to build the native app in iOS,

it will produce native iOS apps.

Android Java native

Application development using Java with Android SDK will

produce Native Apps, and it is the basic language. It is

designed around Android's capabilities and conventions

to give users the best experience.

React Native
React Native apps look and feel like they were custom-

developed for the iOS or Android device.

Conclusion:

• Google Flutter: 8

• iOS Swift native: 9

• Android Java native: 9

• React Native: 9

6.2.2. Load Time

SOLUTION EVALUATION

Google Flutter

Flutter produces native application but the load time is

the same as Native. But it is not tested yet for complex

and big applications.

iOS Swift native Has good load time.

Android Java native Has good load time.

React Native
React Native load time is relatively the same with its

Native version.

Conclusion:

• Google Flutter: 8

• iOS Swift native: 9

• Android Java native: 9

• React Native: 8

White Paper Google Flutter

Comparison with Native Mobile
Development ver.1

Confidential © Mitrais 13 / 14

6.2.3. Runtime Performance

SOLUTION EVALUATION

Google Flutter

For a small application, it feels like code with Native

language. Technically speaking, Flutter should be faster

since there is no Javascript bridge for interaction with

Native component. However, it is not tested yet to

develop it for large and complex applications.

iOS Swift native Has best performance for iOS App

Android Java native Has best performance for Android Application

React Native

React Native application feels and performs smoothly like

apps with Native language. However, some complex

dynamic user interactions and animations still have

performance issues in React Native.

Conclusion:

• Google Flutter: 8

• iOS Swift native: 9

• Android Java native: 9

• React Native: 8

7. Conclusion

We can see from the Platform Evaluation, that Android Java Native and Swift native are

probably the best tool that will be appropriate for most developers to use for Native

application development (iOS and Android), since it has the highest score followed by

Google Flutter. Google Flutter is now in Beta version and has much room for improvement.

Once it is in Release version, it will be a good choice to develop Native Applications for

both Android and iOS with short time frames.

8. References

Flutter - Beautiful native apps in record time (no date). Available at:

https://flutter.io/ (Accessed: 14 March 2018).

Flutter vs React Native Comparison for Q1 2018. Available at:

https://agileengine.com/flutter-vs-react-native-comparison

Heitkötter, H. et al. (no date) ‘Evaluating Frameworks for Creating Mobile Web Apps’.

Available at:

https://pdfs.semanticscholar.org/59e2/950d74d231eaa6889d346b3b7ba7823

446d4.pdf (Accessed: 14 March 2018).

Sohn, H.-J. et al. (2015) ‘Quality Evaluation Criteria Based on Open Source Mobile

HTML5 UI Framework for Development of Cross-Platform’, International

Journal of Software Engineering and Its Applications, 9(6), pp. 1–12. doi:

10.14257/ijseia.2015.9.6.01.

Swift.org - Welcome to Swift.org (no date). Available at: https://swift.org/

(Accessed: 15 March 2018).

The Swift Programming Language (Swift 4.1): About Swift (no date). Available at:

https://developer.apple.com/library/content/documentation/Swift/Conceptual

/Swift_Programming_Language/index.html (Accessed: 15 March 2018).

White Paper Google Flutter

Comparison with Native Mobile
Development ver.1

Confidential © Mitrais 14 / 14

Copyright

Copyright © 2018 Mitrais
All rights reserved.

Disclaimer
Any and all information in this document has been compiled

and provided for information purposes only. The information

provided herein may include information compiled from a

variety of third parties. Mitrais will not be liable for any loss,

damage, cost or expense incurred in relation to or arising by

reason of any person relying on the information in this

document or any link to any website provided herein, whether

or not caused by negligence on Mitrais’ part. While Mitrais

endeavours to provide the information up to date and correct,

Mitrais make no representations or warranties of any kind,

express or implied, about the accuracy, reliability,

completeness or currency of the information or its usefulness

in achieving any purpose. Readers of this document are

responsible for assessing its relevance and verifying the

accuracy of the content. In any event, the information

provided herein should not be construed as providing advice

whether legal or otherwise.

